ORIGINAL PAPER

Steven G. E. Marsh · Peter Parham · Bo Dupont · Daniel E. Geraghty · John Trowsdale · Derek Middleton · Carlos Vilches · Mary Carrington · Campbell Witt · Lisbeth A. Guethlein · Heather Shilling · Christian A. Garcia · Katharine C. Hsu · Hester Wain

Killer-cell immunoglobulin-like receptor (KIR) nomenclature report, 2002

Received: 17 March 2003 / Accepted: 19 March 2003 / Published online: 28 June 2003 © Springer-Verlag 2003

During discussion at the WHO Nomenclature Committee for Factors of the HLA System meeting in Victoria, Canada in May 2002, it was decided to form a subcommittee to co-ordinate the naming of alleles of the genes encoding the killer-cell immunoglobulin-like re-

S. G. E. Marsh () Anthony Nolan Research Institute, Royal Free Hospital, Pond Street, Hampstead, London, NW3 2QG, UK e-mail: marsh@ebi.ac.uk Tel.: +44-20-72848321 Fax: +44-20-72848331

P. Parham · L. A. Guethlein Stanford University School of Medicine, Stanford, USA

B. Dupont \cdot K. C. Hsu Sloan-Kettering Institute for Cancer Research, New York, USA

D. E. Geraghty Fred Hutchinson Cancer Center, Seattle, USA

J. Trowsdale Cambridge University, Cambridge, UK

D. Middleton Northern Ireland Tissue Typing Laboratory, Belfast, UK

C. Vilches Hospital Puerta de Hierro, Madrid, Spain

M. Carrington Frederick Cancer Research and Development Centre, Frederick, USA

C. Witt Royal Perth Hospital, Perth, Australia

H. Shilling University of Washington, Seattle, USA

C. A. Garcia Anthony Nolan Research Institute, London, UK

H. Wain University College London, London, UK (HUGO Gene Nomenclature Committee) ceptors (KIR) (Marsh et al. 2002). These genes are encoded on chromosome 19 (19q13.4) and have varying degrees of polymorphism. The receptors encoded by the *KIR* genes are expressed by natural killer (NK) cells and a subset of T cells and some of them have been shown to have specificity for determinants of HLA class I molecules. The extracellular ligand-binding part of KIR consists of two or three immunoglobulin- (Ig-) like domains. The discussions which took place in Victoria are further to earlier discussions on KIR nomenclature at the NK Polymorphism meeting (27–29 July 2001) in Cambridge, UK. In addition a request has been made by the International Union of Immunological Societies (IUIS) to provide a standardised nomenclature for the expressed protein products of the KIR genes.

KIR gene nomenclature

The first KIR to be defined were inhibitory receptors and when initially coined the acronym stood for killer-cell inhibitory receptor. With appreciation that this family of molecules included both activating and inhibitory receptors, the KIR acronym was retained and is now accepted as an abbreviation for killer-cell immunoglobulin-like receptor (Long et al. 1996). Unlike HLA genes, which for practical and historical reasons are named by the WHO Nomenclature Committee for Factors of the HLA System, the naming of KIR genes is the responsibility of the HUGO Genome Nomenclature Committee (HGNC). Agreement was reached with the HGNC for naming the KIR genes and a total of 17 genes have been recognised and named (Table 1), the ones most recently assigned being KIR2DL5A, KIR2DL5B, KIR2DP1, KIR3DL3 and KIR3DP1. The subcommittee will continue to work closely with the HGNC in the future to ensure all newly described genes are assigned appropriate names.

The names given to the *KIR* genes are based on the structures of the molecules they encode. The first digit

Table 1 KIR gene names

Gene symbol	Protein symbol	Description	Aliases	Reference or submitting au- thor
KIR2DL1	KIR2DL1	Killer cell immunoglobulin-like receptor,	cl-42, nkat1, 47.11, p58.1,	(Colonna and Samaridis 1995;
KIR2DL2	KIR2DL2	two domains, long cytoplasmic tail, 1 Killer cell immunoglobulin-like receptor, two domains, long cytoplasmic tail, 2	CD158a cl-43, nkat6, CD158b1	Wagtmann et al. 1995a) (Colonna and Samaridis 1995; Wagtmann et al. 1995a)
KIR2DL3	KIR2DL3	Killer cell immunoglobulin-like receptor, two domains, long cytoplasmic tail, 3	cl-6, nkat2, nkat2a, nkat2b, p58, CD158b2	(Colonna and Samaridis 1995; Wagtmann et al. 1995a)
KIR2DL4	KIR2DL4	Killer cell immunoglobulin-like receptor, two domains, long cytoplasmic tail, 4	103AS, 15.212, CD158d	(Selvakumar et al. 1996)
KIR2DL5A	KIR2DL5A		KIR2DL5.1, CD158f	(Vilches et al. 2000c)
KIR2DL5B	KIR2DL5B	Killer cell immunoglobulin-like receptor, two domains, long cytoplasmic tail, 5B	KIR2DL5.2, KIR2DL5.3, KIR2DL5.4	(Vilches et al. 2000c)
KIR2DS1	KIR2DS1	Killer cell immunoglobulin-like receptor, two domains, short cytoplasmic tail, 1	EB6ActI, EB6ActII, CD158 h	(Biassoni et al. 1996)
KIR2DS2	KIR2DS2	Killer cell immunoglobulin-like receptor, two domains, short cytoplasmic tail, 2	cl-49, nkat5, 183ActI, CD158j	(Colonna and Samaridis 1995; Wagtmann et al. 1995a)
KIR2DS3	KIR2DS3	Killer cell immunoglobulin-like receptor, two domains, short cytoplasmic tail, 3	nkat7	(Dohring et al. 1995a)
KIR2DS4	KIR2DS4	Killer cell immunoglobulin-like receptor, two domains, short cytoplasmic tail, 4	cl-39, KKA3, nkat8, CD158i	(Dohring et al. 1996; Wagtmann et al. 1995a)
KIR2DS5	KIR2DS5	Killer cell immunoglobulin-like receptor, two domains, short cytoplasmic tail, 5	nkat9, CD158 g	(Dohring et al. 1996)
KIR2DP1	KIR2DP1	Killer cell immunoglobulin-like receptor, two domains, pseudogene 1	KIRZ, KIRY, KIR15, KIR2DL6	(Vilches et al. 2000c)
KIR3DL1	KIR3DL1	Killer cell immunoglobulin-like receptor, three domains, long cytoplasmic tail, 1	cl-2, NKB1, cl-11, nkat3, NKB1B, AMB11, KIR, CD158e1	(Colonna and Samaridis 1995)
KIR3DL2	KIR3DL2	Killer cell immunoglobulin-like receptor, three domains, long cytoplasmic tail, 2	cl-5, nkat4, nkat4a, nkat4b, CD158 k	(Colonna and Samaridis 1995)
KIR3DL3	KIR3DL3	Killer cell immunoglobulin-like receptor, three domains, long cytoplasmic tail, 3	KIRC1, KIR3DL7, KIR44, CD158z	(Torkar et al. 1998)
KIR3DS1	KIR3DS1	Killer cell immunoglobulin-like receptor, three domains, short cytoplasmic tail, 1	nkat10, CD158e2	(Dohring et al. 1996)
KIR3DP1	KIR3DP1	Killer cell immunoglobulin-like receptor, three domains, pseudogene 1	KIRX, KIR48, KIR2DS6, KIR3DS2P, CD158c	(Vilches et al. 2000c)

following the KIR acronym corresponds to the number of Ig-like domains in the molecule and the "D" denotes "domain". The D is followed by either an "L" indicating a "Long" cytoplasmic tail, an "S" indicating a "Short" cytoplasmic tail or a "P" for pseudogenes. The final digit indicates the number of the gene encoding a protein with this structure. Thus *KIR2DL1*, *KIR2DL2* and *KIR2DL3* all encode receptors having two extracellular Ig-like domains and a long cytoplasmic tail (Vilches and Parham 2002). Where two or more genes have very similar structures and have very similar sequences, they may be given the same number but distinguished by a final letter; for example, the *KIR2DL5A* and *KIR2DL5B* genes (Gomez-Lozano et al. 2002). The similarity of these two genes suggests they are related by a recent gene duplication event.

Certain *KIR* genes have arisen through recombination between two other *KIR* genes and are effectively functional hybrids of the parent genes. The question for gene nomenclature is whether the recombinant gene should have a new unique name or be given a name that in some way represents its evolutionary ontogeny. If we consider a hypothetical recombination between *3DL1* and *3DL2*, we could name the new product according to these parent genes, either by concatenating their names (i.e. *3DL13DL2*) or by arbitrarily choosing to name the gene after the parent which has contributed the 5' end of its sequence (i.e. 3DL1 if the recombination was 5' $3DL1 \times 3DL2$ 3' or 3DL2 if the recombination was $5'3DL2 \times 3DL1$ 3'). This system of naming derived from the parent gene makes many assumptions about the nature of the recombination and the function of the new gene and presumes that there have been no further modifications to the gene that would merit providing a new name. The alternative of assigning a new name to the recombinant gene using the same criteria that have been applied in naming all other new *KIR* genes (based on domain structure, cytoplasmic tail length and sequence similarity) avoids the ambiguities of these assumptions. In this case the new gene could be assigned 3DL'n' where "n" represents the next number in the series.

Perhaps the simplest solution to naming alleles of a recombinant gene is to assign the allele with the gene name of the gene contributing the immunoglobulin-like domains, providing sufficient homology is maintained. In such situations where the 3' region of the recombinant allele is inconsistent with the L/S designation of the gene, a suffix would be added to the allele name to indicate the aberrant nature of the allele. Using this nomenclature, it would be possible to rename the alleles of the 3DS1 gene,

which behave as alleles of the *3DL1* gene, in the *3DL1* series with an "S" suffix to indicate their short tail.

KIR protein nomenclature

Consistent with standard genetic nomenclature the names of genes and alleles are given in italic typeface. The names for the KIR proteins are the same as those used for the *KIR* genes, however, they will be presented as normal typeface, see Table 1.

Like other cell surface molecules of the immune system the KIR molecules have also been given a CD designation and are recognised as members of the CD158 series (see the list of aliases and previous designations given in Table 1) (André et al. 2001; Moretta et al. 1997; Pascal et al. 2002).

KIR allele nomenclature

Following the success of the nomenclature used for HLA alleles, it was decided to name *KIR* allele sequences in an analogous fashion. After the gene name, an asterisk will be used as a separator before a numerical allele designation. The first three digits of the numerical designation will be used to indicate alleles that differ in the sequences of their encoded proteins. The next two digits will be used to distinguish alleles that only differ by synonymous (non-coding) differences within the coding sequence. The final two digits will be used to distinguish alleles that only differ by substitutions in either an intron, promoter, or other non-coding region of the sequences assigned official names can be found in Table 2.

Evidence exists indicating that the *3DS1* and *3DL1* genes behave as alleles of the same gene. It is likely that at some time in the future the alleles of these genes will be combined under one gene name. To avoid confusion, it has been decided to name the alleles of both genes in a single numerical series, thus *3DL1*001* to *3DL1*009* are followed with *3DS1*010* to *3DS1*014*. Likewise the alleles of the *2DL5A* and *2DL5B* genes have also been named in a single series, due to the similarity of these sequences.

Naming KIR haplotypes

The *KIR* gene family forms part of the leukocyte receptor complex (LRC), which includes several related gene families that encode cell-surface receptors of the immune system and have extracellular regions made up of Ig-like domains. Within the LRC the *KIR* genes appear the most variable. In addition to allelic polymorphism there is haplotypic variability due to the different number and kind of *KIR* genes. This situation is analogous to that seen for the HLA-DRB genes, but contrasts with that of the HLA class I gene organisation which is relatively fixed. Because haplotypic diversity is a major contributor to the population diversity of KIR and of NK cell repertoires, there was agreement amongst the committee that it would be useful to devise a robust and versatile nomenclature system that could be used to describe the gene content of different KIR haplotypes. With this in mind it was suggested that each KIR haplotype be designated "KH" followed by a hyphen and then a unique three digit number, assigned sequentially indicating the different haplotypes. This system would allow 999 KIR haplotypes to be named.

Two kinds of KIR haplotype have been described based upon gene content, and are designated A and B. No single specific criterion distinguishes all A and B haplotypes, a current working definition being as follows. Group B haplotypes are characterised by one or more of the following genes: KIR2DL5, KIR2DS1, KIR2DS2, KIR2DS3, KIR2DS5 and KIR3DS1. Conversely, group A haplotypes are characterized by the absence of all these genes. As a consequence of these differences, the B haplotypes have more genes encoding activating KIR than A haplotypes. Different investigators have used different criteria to distinguish A and B haplotypes and certain haplotypes are assigned differently when using these different criteria (Hsu et al. 2002a; Uhrberg et al. 1997; and other references). The committee felt that the distinction between A and B haplotypes is a useful one, having potential biological and medical significance, and that efforts should be made to develop a consistent and logical set of criteria for distinguishing them. It was proposed that as part of the haplotype nomenclature the letters A or B would follow the three digit number. So a haplotype may, for example, be named KH-001A or KH-022B.

To supplement the haplotype name and provide further information it was suggested that following the haplotype designation a 17-digit binary code would indicate the presence or absence of the genes on the haplotype. Each digit in the code would represent a distinct gene: a "1" indicating presence of the gene, a "0" its absence. Thus a full haplotype name could be given as KH-001A-11100010011011011. This system can readily accommodate the discovery of additional *KIR* genes by simple introduction of another digit. Wherever possible the order of the genes in the full haplotype designation will reflect their order in the genome. However when digits are added to represent newly discovered genes they will be placed at the end of the code, in the order of their discovery.

To refine haplotype definition a further series of digits could be used to indicate which allele for each *KIR* gene is present on a haplotype. It is suggested that such an addition would only be made to the nomenclature once it had become common practice to type *KIR* genes at the allele level.

Table 2 KIR allele names

Allele Name	Previous name	Cell ID	Accession Number	Reference or submitting author
2DL1*001	NKAT1	?	L41267	(Colonna and Samaridis 1995)
2DL1*002	cl-42	?	U24076	(Wagtmann et al. 1995a)
2DL1*00301	cl-47.11	NK-lib	U24078	(Wagtmann et al. 1995a)
2DL1*00302	2DL1 M, 2DL1v2	MU	AF285431	(Rajalingam et al. 2001)
2DL1*004	2DL1v	NV	AF022045	(Valiante et al. 1997)
2DL1*005	2DL1W102, 2DL1v3	WC	AF285432	(Rajalingam et al. 2001)
2DL2*001	cl-43	?	U24075	(Wagtmann et al. 1995a)
2DL2*002	NKAT6	?	L76669	(Dohring et al. 1996)
2DL2*003	2DL2v2, 2DL2 M	MU	AF285434	(Rajalingam et al. 2001)
2DL2*004	2DL2v1	WC	AF285433	(Rajalingam et al. 2001)
2DL3*001	NKAT2, cl-6	?, NK3.3	L41268, U24074	(Colonna and Samaridis 1995; Wagtmann et al. 1995a)
2DL3*002	NKAT2a	?	L76662	(Dohring et al. 1996)
2DL3*003	NKAT2b	?	L76663	(Dohring et al. 1996)
2DL3*004	KIR-023 GB	?	U73395	(Selvakumar et al. 1997a)
2DL3*005	2DL3v	PP	AF022048	(Valiante et al. 1997)
2DL3*006	2DL3W308	WC	AF285435	(Rajalingam et al. 2001)
2DL4*00101	NK3.3#27	NK3.3	X99480	(Cantoni et al. 1998)
2DL4*00102	2DL4v1	PP, NV	AF034771	(Valiante et al. 1997)
2DL4*00201	15.212	?	X97229	(Cantoni et al. 1998)
2DL4*00202	2DL4v2	PP, NV	AF034772	(Valiante et al. 1997)
2DL4*003	KIR103AS	YT, NK92	U71199	(Selvakumar et al. 1996)
2DL4*004	KIR103LP	?	AF002979	(Selvakumar et al. 1997b)
2DL4*005	2DL4v3	NV	AF034773	(Valiante et al. 1997)
2DL4*006	2DL4v4	RR	AF285436	(Rajalingam et al. 2001)
2DL4*007	-	LP	AF276292	A. Selvakumar, New York, USA
2DL5A*001	2DL5.1	NV, XX-1060P11	AF204903, AF217485, AL133414	(Vilches et al. 2000a, 2000c; Wilson et al. 2000)
2DL5B*002	2DL5.2	NV	AF217486	(Vilches et al. 2000a)
2DL5B*003	2DL5.3	WCS	AF217487	(Vilches et al. 2000a)
2DL5B*004	2DL5.4	CC	AF260138, AF260139, AF260140, AF260141	(Vilches et al. 2000a)
2DS1*001	Eb6ActI	PA	X89892	(Biassoni et al. 1996)
2DS1*002	2DS1v	NV	AF022046	(Valiante et al. 1997)
2DS1*003	Eb6ActII	GT	X98858	(Biassoni et al. 1997)
2DS1*004	2DS1v1	WC	AF285437	(Rajalingam et al. 2001)
2DS2*001	NKAT5, cl-49	?, ?	L41347, U24079	(Colonna and Samaridis 1995; Wagtmann et al. 1995a)
2DS2*002	183ActI	23D	X89893	(Biassoni et al. 1996)
2DS2*003	TG14#35	TG14	AJ002103	R. Biassoni, Genova, Italy
2DS2*004	2DS2v1	WC	AF285438	(Rajalingam et al. 2001)
2DS2*005	2DS2v2	FC	AF285439	(Rajalingam et al. 2001)
2DS3*00101	NKAT7	?	L76670	(Dohring et al. 1996)
2DS3*00102	59C_K3	Pag1	X97231	R. Biassoni, Genova, Italy
2DS3*00103	2DS3v	NV	AF022047	(Valiante et al. 1997)
2DS4*00101	cl-39, cl-17, KKA3_34-52	?, ?, 4053, Mal 43–52	U24077, AF002255,	(Bottino et al. 1996;
2034 00101	CI-37, CI-17, KKA3_34-32	:, :, 4055, Wiai 45-52	AJ417555, X94609	Maxwell et al. 2002; Wagtmann et al. 1995a),
		2		H.W. Chan, Pittsburgh, USA
2DS4*00102	NKAT8	?	L76671	(Dohring et al. 1996)
2DS4*002	2DS4v1	RR	AF285440	(Rajalingam et al. 2001)
2DS4 *003	Deletion V, KIR1D	3321	AJ417554	(Hsu et al. 2002b; Maxwell et al. 2002)
2DS5*001	NKAT9	?	L76672	(Dohring et al. 1996)
2DS5*002	_	NV	AF208054	(Vilches et al. 2000b)
2DS5*003	_	WC	AF272389	(Vilches et al. 2000b)
2DP1*001	KIR15	NV	AF204906, AF204907,	(Vilches et al. 2000c)
			AF204908	
SDLI*00101	NKA13, CI-11, AMB11.115	<i>ι, ι</i> , ΑΜΒΠ	L41269, U30274, X94262	(Colonna and Samaridis 1995; Pende et al. 1996;
2011#00102		0		Wagtmann et al. 1995b)
		•		
SDLI*002	INKB1, CI-2	INKBI, ?	U31410, U302/3	
2DP1*002 3DL1*00101 3DL1*00102 3DL1*002	– NKAT3, cl-11, AMB11.115 Nnkat-3 NKB1, cl-2	CTB-61M7 ?, ?, AMB11 ? NKB1, ?	AC011501 L41269, U30274, X94262 AF262968 U31416, U30273	Pende et al. 1996;

Table 2	(continued)
---------	-------------

Allele Name	Previous name	Cell ID	Accession Number	Reference or submitting author
3DL1*003 3DL1*00401 3DL1*00402 3DL1*005	3DL1v W204 M322 3DL1v2	NV WC MU YW	AF022049 AF262970 AF262969 AF262971	(Valiante et al. 1997) (Gardiner et al. 2001) (Gardiner et al. 2001) (Gardiner et al. 2001)
3DL1*005 3DL1*006 3DL1*007	NJN55 r3k10	? RR	AF262972 AF262973	(Gardiner et al. 2001) (Gardiner et al. 2001)
3DL1*007 3DL1*008 3DL1*009	r3k2	RR	AF262974	(Gardiner et al. 2001)
3DL1*009 3DL2*001	– NKAT4	3321, 4053 ?	AJ417556, AJ417557 L41270	(Crum et al. 2000) (Colonna and Samaridis 1995)
3DL2*002	cl-5, AMC5	?, ?	U30272, X94374	(Pende et al. 1996; Wagtmann et al. 1995b)
3DL2*003	1.1, NKAT4A	?, ?	X94373, L76665	(Dohring et al. 1996; Pende et al. 1996)
3DL2*004 3DL2*005	17.1C NKAT4b	? ?	X93595 L76666	(Pende et al. 1996) (Dohring et al. 1996)
3DL2*005 3DL2*006 3DL2*007	3DL2Wv2 b3DL2b	WC BS	AF262966 AF262965	(Gardiner et al. 2001) (Gardiner et al. 2001)
3DL2*008	r3k17	RR	AF262967	(Gardiner et al. 2001)
3DL2*009 3DL2*010	rrk100 _	RR ?	AF263617 AY059418	(Rajalingam et al. 2001) (Shilling et al. 2002)
3DL2*011 3DL2*012	_	? ?	AY059419 AY059420	(Shilling et al. 2002) (Shilling et al. 2002)
3DL3*001	KIRCI	?	AF072407, AF072408, AF072409, AF072409, AF072410	(Torkar et al. 1998)
3DL3*00201	KIR44a	NV, UV5HL9–5B	AF204909, AF204910, AF204901, AC006293	(Martin et al. 2000; Vilches et al. 2000c)
3DL3*00202	KIR44b	NV	AF204911, AC000293 AF204912, AF204913, AF204914	(Vilches et al. 2000c)
3DL3*003 3DL3*004	KIRC1 3DL7	XX-1060P11 ?	AF204914 AL133414 AF352324	(Wilson et al. 2000) (Long et al. 2001)
3DS1*010 3DS1*011	NKAT10, 3DS1*001 C97.12#5, 3DS1*002	? ?	L76661 X97233	(Dohring et al. 1996) R Biassoni, Genova, Italy
3DS1*012 3DS1*013	KIR-123FM, 3DS1*003 3DS1v, 3DS1*004	? NV	U73396 AF022044	(Selvakumar et al. 1997a) (Valiante et al. 1997)
3DS1*014	3DS1*005	4373	AJ417558	(Crum et al. 2000)
3DP1*001	KIR48a	NV	AF204915, AF204916, AF204917	(Vilches et al. 2000c)
3DP1*002 3DP1*00301	KIRX KIR48b	XX-1060P11 NV	AL133414 AF204918, AF204919, AF204920	(Wilson et al. 2000) (Vilches et al. 2000c)
3DP1*00302	2DS6	CTB-61M7	AC011501	(Martin et al. 2000)

Naming KIR genotypes

As well as assigning unique designations to KIR haplotypes it was also thought useful to provide a nomenclature system to describe KIR genotypes. It was suggested that each genotype would be indicated by the prefix "KG" followed by a hyphen, in turn followed by a unique fourdigit number. This would then be followed with an optional hyphen and 17-digit binary code. As in the naming of haplotypes the binary code would indicate the presence (1) or absence (0) of *KIR* genes in the genotype. So a KIR genotype may be written KG-0202-11101011011011011. The order of genes would be as used for the haplotype code.

Further refinements of this system to indicate the presence of null alleles or to demonstrate homozygosity of alleles have been suggested. However, in the short term it has been recommended that the community gains familiarity with the system as proposed before implementing any additional complexity.

KIR Sequence Database

In collaboration with the European Bioinformatics Institute, the KIR-DB, a database of the nucleotide and protein sequence alignments for all of the officially recognised KIR alleles, has been established. Together with the sequences, information is given on the nomenclature assigned to the different *KIR* alleles. In the near future further tools for the submission and analysis of the *KIR* sequences will be made available from the web site. The KIR-DB may be accessed via world wide web from www.ebi.ac.uk/ipd/kir/. List of committee members involved in preparing this report

S.G.E. Marsh, Anthony Nolan Research Institute, London, UK (Rapporteur/Chairman IUIS Subcommittee on KIR Nomenclature)

B. Dupont, Sloan-Kettering Institute for Cancer Research, New York, USA

D.E. Geraghty, Fred Hutchinson Cancer Center, Seattle, USA

D. Middleton, Northern Ireland Tissue Typing Laboratory, Belfast, UK

P. Parham, Stanford University School of Medicine, Stanford, USA

J. Trowsdale, Cambridge University, Cambridge, UK

Co-opted members

M. Carrington, Frederick Cancer Research and Development Centre, Frederick, USA

C.A. Garcia, Anthony Nolan Research Institute, London, UK

L.A. Guethlein, Stanford University School of Medicine, Stanford, USA

K.C. Hsu, Sloan-Kettering Institute for Cancer Research, New York, USA

H. Shilling, University of Washington, Seattle, USA

C. Vilches, Hospital Puerta de Hierro, Madrid, Spain

H. Wain, University College London, London, UK (HUGO Gene Nomenclature Committee)

C. Witt, Royal Perth Hospital, Perth, Australia

References

- André P, Biassoni R, Colonna M, Cosman LL, Lanier LL, Long EO, Lopez-Botet M, Moretta A, Moretta L, Parham P, Trowsdale J, Vivier E, Wagtmann N, Wilson MJ (2001) New nomenclature for MHC receptors. Nature Immunol 2:661
- Biassoni R, Cantoni C, Falco M, Verdiani S, Bottino C, Vitale M, Conte R, Poggi A, Moretta A, Moretta L (1996) The human leukocyte antigen (HLA)-C-specific "activatory" or "inhibitory" natural killer cell receptors display highly homologous extracellular domains but differ in their transmembrane and intracytoplasmic portions. J Exp Med 183:645–650
- Biassoni R, Pessino A, Malaspina A, Cantoni C, Bottino C, Sivori S, Moretta L, and Moretta A (1997) Role of amino acid position 70 in the binding affinity of p50.1 and p58.1 receptors for HLA-Cw4 molecules. Eur J Immunol 27:3095–3099
- Bottino C, Sivori S, Vitale M, Cantoni C, Falco M, Pende D, Morelli L, Augugliaro R, Semenzato G, Biassoni R, Moretta L, Moretta A (1996) A novel surface molecule homologous to the p58/p50 family of receptors is selectively expressed on a subset of human natural killer cells and induces both triggering of cell functions and proliferation. Eur J Immunol 26:1816–1824
- Cantoni C, Verdiani S, Falco M, Pessino A, Cilli M, Conte R, Pende D, Ponte M, Mikaelsson M. S, Moretta L, Biassoni R (1998) p49 a putative HLA class I-specific inhibitory NK receptor belonging to the immunoglobulin superfamily. Eur J Immunol 28:1980–1990
- Colonna M, Samaridis J (1995) Cloning of immunoglobulinsuperfamily members associated with HLA-C and HLA-B recognition by human natural killer cells. Science 268:405–408

- Crum KA, Logue SE, Curran MD, Middleton D (2000) Development of a PCR-SSOP approach capable of defining the natural killer cell inhibitory receptor (KIR) gene sequence repertoires. Tissue Antigens 56:313–326
- D'Andrea A, Chang C, Franz-Bacon K, McClanahan T, Phillips JH, Lanier LL (1995) Molecular cloning of NKB1. A natural killer cell receptor for HLA-B allotypes. J Immunol 155: 2306–2310
- Dohring C, Samaridis J, Colonna M (1996) Alternatively spliced forms of human killer inhibitory receptors. Immunogenetics 44:227–230
- Gardiner CM, Guethlein LA, Shilling HG, Pando M, Carr WH, Rajalingam R, Vilches C, Parham P (2001) Different NK cell surface phenotypes defined by the DX9 antibody are due to KIR3DL1 gene polymorphism. J Immunol 166:2992–3001
- Gomez-Lozano N, Gardiner CM, Parham P, Vilches C (2002) Some human KIR haplotypes contain two KIR2DL5 genes: KIR2DL5A and KIR2DL5B. Immunogenetics 54:314–319
- Hsu KC, Chida S, Geraghty DE, Dupont B (2002a) The killer cell immunoglobulin-like receptor (KIR) genomic region: geneorder haplotypes and allelic polymorphism. Immunol Rev 190:40–52
- Hsu KC, Liu X-R, Selvakumar A, Mickelson E, O'Reilly RJ, Dupont B (2002b) Killer Ig-like receptor haplotype analysis by gene content: evidence for genomic diversity with a minimum of six basic framework haplotypes each with multiple subsets. J Immunol 169:5118–5129
- Long EO, Colonna M, Lanier LL (1996) Inhibitory MHC class I receptors on NK and T cells: a standard nomenclature. Immunol Today 17:100
- Long EO, Barber DF, Burshtyn DN, Faure M, Peterson M, Rajagopalan S, Renard V, Sandusky M, Stebbins CC, Wagtmann N, Watzl C (2001) Inhibition of natural killer cell activation signals by killer cell immunoglobulin-like receptors (CD158). Immunol Rev 181:223–233
- Marsh SGE, Albert ED, Bodmer WF, Bontrop RE, Dupont B, Erlich HA, Geraghty DE, Hansen JA, Mach B, Mayr WR, Parham P, Petersdorf EW, Sasazuki T, Schreuder GM, Strominger JL, Svejgaard A, Terasaki PI (2002) Nomenclature for factors of the HLA system 2002. Tissue Antigens 60:407– 464
- Martin AM, Freitas EM, Witt CS, Christiansen FT (2000) The genomic organization and evolution of the natural killer immunoglobulin-like receptor (KIR) gene cluster. Immunogenetics 51:268–280
- Maxwell LD, Wallace A, Middleton D, Curran MD (2002) A common KIR2DS4 deletion variant in the human that predicts a soluble KIR molecule analogous to the KIR1D molecule observed in the rhesus monkey. Tissue Antigens 60:254–258
- Moretta A, Bottino C, Biassoni R (1997) CD158a (p58.1/p50.1) and CD158b (p58.2/p50.2) natural killer receptors for HLA-C alleles. Workshop Panel Report. In: Kishimoto T, Kikutani H, von dem Born AEGK, Goyert SM, Masou DY, Miyasaka M, Moretta K, Okumura K, Shaw S, Springer TA, Sugamura K, Zola H (eds) Leucocyte typing VI: White cell differentiation antigens. Garland, New York, pp 1109–1220
- Pascal V, Vivier E, André P (2002) CD158 (killer immunoglobulinlike receptors family) report. In Mason D (ed) Leucocyte typing VII. Oxford University Press, New York, pp 412–413
- Pende D, Biassoni R, Cantoni C, Verdiani S, Falco M, di Donato C, Accame L, Bottino C, Moretta A, Moretta L (1996) The natural killer cell receptor specific for HLA-A allotypes: a novel member of the p58/p70 family of inhibitory receptors that is characterized by three immunoglobulin-like domains and is expressed as a 140-kD disulphide-linked dimer. J Exp Med 184:505–518
- Rajalingam R, Gardiner CM, Canavez F, Vilches C, Parham P (2001) Identification of seventeen novel KIR variants: fourteen of them from two non-Caucasian donors. Tissue Antigens 57:22–31
- Selvakumar A, Steffens U, Dupont B (1996) NK cell receptor gene of the KIR family with two IG domains but highest homology

to KIR receptors with three IG domains. Tissue Antigens $48{:}285{-}294$

- Selvakumar A, Steffens U, Dupont B (1997a) Polymorphism and domain variability of human killer cell inhibitory receptors. Immunol Rev 155:183–196
- Selvakumar A, Steffens U, Palanisamy N, Chaganti RS, Dupont B (1997b) Genomic organization and allelic polymorphism of the human killer cell inhibitory receptor gene KIR103. Tissue Antigens 49:564–573
- Shilling HG, Guethlein LA, Cheng NW, Gardiner CM, Rodriguez R, Tyan D, Parham P (2002) Allelic polymorphism synergizes with variable gene content to individualize human KIR genotype. J Immunol 168:2307–2315
- Torkar M, Norgate Z, Colonna M, Trowsdale J, Wilson MJ (1998) Isotypic variation of novel immunoglobulin-like transcript/ killer cell inhibitory receptor loci in the leucocyte receptor complex. Eur J Immunol 28:3959–3967
- Uhrberg M, Valiante NM, Shum BP, Shilling HG, Lienert-Weidenbach K, Corliss B, Tyan D, Lanier LL, Parham P (1997) Human diversity in killer cell inhibitory receptor genes. Immunity 7:753–763
- Valiante NM, Uhrberg M, Shilling HG, Lienert-Weidenbach K, Arnett KL, D'Andrea A, Phillips JH, Lanier LL, Parham P (1997) Functionally and structurally distinct NK cell receptor repertoires in the peripheral blood of two human donors. Immunity 7:739–751

- Vilches C, Parham P (2002) KIR: diverse rapidly evolving receptors of innate and adaptive immunity. Annu Rev Immunol 20:217–251
- Vilches C, Gardiner CM, Parham P (2000a) Gene structure and promoter variation of expressed and nonexpressed variants of the KIR2DL5 gene. J Immunol 165:6416–6421
- Vilches C, Pando MJ, Rajalingam R, Gardiner CM, Parham P (2000b) Discovery of two novel variants of KIR2DS5 reveals this gene to be a common component of human KIR 'B' haplotypes. Tissue Antigens 56:453–456
- Vilches C, Rajalingam R, Uhrberg M, Gardiner CM, Young NT, Parham P (2000c) KIR2DL5 a novel killer-cell receptor with a D0-D2 configuration of Ig-like domains. J Immunol 164:5797– 5804
- Wagtmann N, Biassoni R, Cantoni C, Verdiani S, Malnati MS, Vitale M, Bottino C, Moretta L, Moretta A, Long EO (1995a) Molecular clones of the p58 NK cell receptor reveal immunoglobulin-related molecules with diversity in both the extra- and intracellular domains. Immunity 2:439–449
- Wagtmann N, Rajagopalan S, Winter CC, Peruzzi M, Long EO (1995b) Killer cell inhibitory receptors specific for HLA-C and HLA-B identified by direct binding and by functional transfer. Immunity 3:801–809
- Wilson MJ, Torkar M, Haude A, Milne S, Jones T, Sheer D, Beck S, Trowsdale J (2000) Plasticity in the organization and sequences of human KIR/ILT gene families. Proc Natl Acad Sci USA 97:4778–4783